زاويه (هندسه)
| ||||
---|---|---|---|---|
![]() | ||||
رمز يونيكود | ∠ | |||
تعديل ![]() |
الزاوية هيا شكل هندسى ناتج عن التقاء شعاعين بنقطة[1]، يُسمى الشعاعان بضلعي الزاوية والنقطة المشتركة بينهما تسمى رأس الزاوية.
تاريخ[تعديل]
عرف إقليدس الزاوية فى المستوي] على أنها ميل واحد من مستقيمين على التانى ب أن المستقيمان يلتقيان فى نقطة وغير متوازيان.[2]

أنواع الزوايا[تعديل]
وفقاً لقياساتها[تعديل]
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
زاوية مُنعدمة | زاوية حادَّة | زاوية قائمة | زاوية منفرجة | زاوية مستقيمة | زاوية منعكسة |
وفقاً لعلاقاتها[تعديل]
![]() |
![]() |
الناتجة عن قاطع[تعديل]
- زاوية قائمة إذا قسمنا الزاوية المستقيمة 180لقسمين متساويين فكل قسم يدعى زاوية قائمة، قياسها 90 درجة
- زاوية حادة هيا الزاوية اللى قياسها أقل من 90 درجة.
- زاوية منفرجة هيا الزاوية اللى قياسها اكبر من 90 درجة وأصغر من 180 درجة.
- زاوية مستقيمة هيا زاوية ضلعاها على استقامة واحدة وباتجاهين مختلفي 180 درجة
- زاوية منعدمة هيا الزاوية اللى قياسها0 درجة.
- زاويتان متساويتان هما زاويتان لهما قياس متساوي.
- زاويتان تشتركان بالرأس هما زاويتان تشتركان بالرأس والأضلاع.
- زاويتان متتامتان هما زاويتان مجموع قياسهما 90 درجة
- زاويتان متكاملتان هما زاويتان مجموع قياسهما 180 درجة.
- زاويتان متجاورتان هما زاويتان تشتركان فى نفس الضلع
- الزوايا المتبادلة بالرأس هيا عبارة عن زاويتان تتشكلان إذا كان فيه مستقيمان متوازيان لهما قاطع (غير معامد)
وفقاً لعلاقاتها[تعديل]
![]() |
![]() |
الناتجة عن قاطع[تعديل]
- زاوية قائمة إذا قسمنا الزاوية المستقيمة 180لقسمين متساويين فكل قسم يدعى زاوية قائمة، قياسها 90 درجة
- زاوية حادة هيا الزاوية اللى قياسها أقل من 90 درجة.
- زاوية منفرجة هيا الزاوية اللى قياسها اكبر من 90 درجة وأصغر من 180 درجة.
- زاوية مستقيمة هيا زاوية ضلعاها على استقامة واحدة وباتجاهين مختلفي 180 درجة
- زاوية منعدمة هيا الزاوية اللى قياسها0 درجة.
- زاويتان متساويتان هما زاويتان لهما قياس متساوي.
- زاويتان تشتركان بالرأس هما زاويتان تشتركان بالرأس والأضلاع.
- زاويتان متتامتان هما زاويتان مجموع قياسهما 90 درجة
- زاويتان متكاملتان هما زاويتان مجموع قياسهما 180 درجة.
- زاويتان متجاورتان هما زاويتان تشتركان فى نفس الضلع
- الزوايا المتبادلة بالرأس هيا عبارة عن زاويتان تتشكلان إذا كان فيه مستقيمان متوازيان لهما قاطع (غير معامد)
مصادر[تعديل]
خطأ: الوظيفة "hPortal" غير موجودة.

زاويه (هندسه) فى المشاريع الشقيقة
تعريفات قاموسية فى ويكاموس
كتب من ويكي الكتب
رحلات من ويكي الرحلات
اقتباسات من ويكي الاقتباس
نصوص مصدرية من ويكي مصدر
صور وملفات صوتية من كومونز
أخبار من ويكي الأخبار.